Literaturverzeichnis

Das Mikrobiom

Übersicht


1. Sender, R., et al. (2016). Revised estimates for the number of human and bacteria cells in the body. PLoS biology14(8)
2. Eckburg, P. B., et al. (2005). Diversity of the human intestinal microbial flora. science308(5728), 1635-1638.
3. Sommer, F., & Bäckhed, F. (2013). The gut microbiota—masters of host development and physiology. Nature Reviews Microbiology11(4), 227.

... und seine Funktionen

Verdauung


1. Aziz, Q., et al. (2013). Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterology & Motility25(1), 4-15.
2. Rowland, I., et al. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European journal of nutrition57(1), 1-24.

Barrierefunktion der Darmschleimhaut


1. Suzuki, T. (2013). Regulation of intestinal epithelial permeability by tight junctions. Cellular and molecular life sciences70(4), 631-659.
2. Hu, M. D., et al. (2018). Policing the intestinal epithelial barrier: innate immune functions of intraepithelial lymphocytes. Current pathobiology reports6(1), 35-46.

Immunfunktion


1. Webb, C. R., et al. (2016). Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology23(2), 67-80.
2. Tlaskalová-Hogenová, H., et al. (2004). Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunology letters93(2-3), 97-108.

3. Allaire, J. M., (2018). The intestinal epithelium: central coordinator of mucosal immunity. Trends in immunology39(9), 677-696.
4. Thaiss, C. A., (2016). The microbiome and innate immunity. Nature535(7610), 65.

Stoffwechsel


1. Kasińska, M. A., & Drzewoski, J. (2015). Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn125(11), 803-813.
2. Liou, A. P., et al. (2013). Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Science translational medicine5(178), 178ra41-178ra41.

Produktion von Metaboliten


1. Dorrestein, P. C., et al. (2014). Finding the missing links among metabolites, microbes, and the host. Immunity40(6), 824-832.
2. Gerhauser, C. (2018). Impact of dietary gut microbial metabolites on the epigenome. Philosophical Transactions of the Royal Society B: Biological Sciences373(1748), 20170359.

Produktion von Vitaminen


1. LeBlanc, J. G., et al. (2011). B‐Group vitamin production by lactic acid bacteria–current knowledge and potential applications. Journal of applied microbiology111(6), 1297-1309.
2. LeBlanc, J. G., et al. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current opinion in biotechnology24(2), 160-168.

Produktion von Neurotransmittern


1. Yano, J. M., et al. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell161(2), 264-276.

Umwelteinflüsse

Der Einfluss von Antibiotika auf das Mikrobiom


1. Langdon, A., et al. (2016). The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome medicine8(1), 39.
2. Dethlefsen, L., & Relman, D. A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proceedings of the National Academy of Sciences108(Supplement 1), 4554-4561.
3. Lange, K., et al. (2016). Effects of antibiotics on gut microbiota. Digestive Diseases34(3), 260-268.
4. Blaser, M. J. (2016). Antibiotic use and its consequences for the normal microbiome. Science352(6285), 544-545.

5. Jernberg, C., et al. (2007). Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. The ISME journal1(1), 56.

Der Einfluss von Schlafmangel auf das Mikrobiom


1. Benedict, C., et al. (2016). Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Molecular metabolism5(12), 1175-1186.
2. Reynolds, A. C. et al. (2017). The shift work and health research agenda: considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep medicine reviews34, 3-9.

Der Einfluss von Rauchen auf das Mikrobiom


1. Savin, Z., et al. (2018). Smoking and the intestinal microbiome. Archives of microbiology200(5), 677-684.

Der Einfluss der Ernährung auf das Mikrobiom


1. Singh, R. K., et al. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of translational medicine15(1), 73.
2. David, L. A., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature505(7484), 559.
3. Biesalski, H. K. (2016). Nutrition meets the microbiome: micronutrients and the microbiota. Annals of the New York Academy of Sciences1372(1), 53-64.
4. Albenberg, L. G., & Wu, G. D. (2014). Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology146(6), 1564-1572.
5. De Filippo, C., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences107(33), 14691-14696.
6. Huang, E. Y., et al. (2013). The role of diet in triggering human inflammatory disorders in the modern age. Microbes and Infection15(12), 765-774.
7. Sonnenburg, E. D., & Sonnenburg, J. L. (2014). Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell metabolism20(5), 779-786.

Wie Süßstoff und Emulgatoren das Mikrobiom beeinträchtigen


1. Suez, J., et al. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature514(7521), 181.
2. Chassaing, B., et al. (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature519(7541), 92.
3. Cani, P. D. (2015). Metabolism: Dietary emulsifiers—sweepers of the gut lining?. Nature Reviews Endocrinology11(6), 319.

Der positive Einfluss von Ballaststoffen auf das Mikrobiom


1. Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients5(4), 1417-1435.
2. So, D., et al. (2018). Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. The American journal of clinical nutrition107(6), 965-983.

Probiotika

Was sind Probiotika und wie wirken sie?


1. Markowiak, P., & Śliżewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients9(9), 1021.
2. Reid, G. (2016). Probiotics: definition, scope and mechanisms of action. Best Practice & Research Clinical Gastroenterology30(1), 17-25.
3. Bermudez-Brito, M., et al. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism61(2), 160-174.
4. Corr, S. C., et al. (2009). Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens. Advances in food and nutrition research56, 1-15.
5. Hemarajata, P., & Versalovic, J. (2013). Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic advances in gastroenterology6(1), 39-51.
6. Lebeer, S., et al. (2018). Identification of probiotic effector molecules: present state and future perspectives. Current opinion in biotechnology49, 217-223.
7. Krishna Rao, R., & Samak, G. (2013). Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Current Nutrition & Food Science9(2), 99-107.
8. Bezkorovainy, A. (2001). Probiotics: determinants of survival and growth in the gut. The American journal of clinical nutrition73(2), 399s-405s.

Präbiotika und Pflanzenextrakte

Überblick Präbiotika


1. Gibson, G. R., et al. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews Gastroenterology & hepatology14(8), 491.
2. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition125(6), 1401-1412.
3. Van Loo, J., et al. (1999). Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). British Journal of Nutrition81(2), 121-132.
4. Collins, S., & Reid, G. (2016). Distant site effects of ingested prebiotics. Nutrients8(9), 523.
5. Macfarlane, G. T., et al. (2008). Bacterial metabolism and health‐related effects of galacto‐oligosaccharides and other prebiotics. Journal of applied microbiology104(2), 305-344.
6. Al-Sheraji, S. Het al. (2013). Prebiotics as functional foods: A review. Journal of functional foods5(4), 1542-1553.

Inulin


1. Gibson, G. Ret al. (1995). Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology108(4), 975-982.
2. Carlson, J. L., et al. (2018). Health effects and sources of prebiotic dietary fiber. Current developments in nutrition2(3), nzy005.
3. Guess, N. D., et al. (2015). A randomized controlled trial: the effect of inulin on weight management and ectopic fat in subjects with prediabetes. Nutrition & metabolism12(1), 36.

Polyphenole und das Mikrobiom


1. Etxeberria, U., et al. (2013). Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. Journal of agricultural and food chemistry61(40), 9517-9533.
2. Cardona, F., Andrés-Lacueva, C., et al. (2013). Benefits of polyphenols on gut microbiota and implications in human health. The Journal of nutritional biochemistry24(8), 1415-1422.
3. Les, F., et al. (2018). Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. Journal of ethnopharmacology220, 67-74.
4. Thilakarathna, W. W., et al. (2018). Polyphenol-based prebiotics and synbiotics: potential for cancer chemoprevention. Current Opinion in Food Science20, 51-57.

Chicoréewurzel


1. Nishimura, M., et al. (2015). Effects of the extract from roasted chicory (Cichorium intybus L.) root containing inulin-type fructans on blood glucose, lipid metabolism, and fecal properties. Journal of traditional and complementary medicine5(3), 161-167.
2. Atta, A. H., et al. (2010). Hepatoprotective effect of methanol extracts of Zingiber officinale and Cichorium intybus. Indian journal of pharmaceutical sciences72(5), 564.
3. Kleessen, B., et al. (2007). Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. British Journal of Nutrition98(3), 540-549.

Granatapfel


1. Les, F., et al. (2018). Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. Journal of ethnopharmacology220, 67-74.
2. Andreux, P. A., et al. (2019). The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism1(6), 595.

Dailybacs

Verdauungstrakt

Probiotics in the treatment of irritable bowel syndrome.1
The effect of probiotics as a treatment for constipation in elderly people: A systematic review. 2
The use of probiotics in healthy volunteers with evacuation disorders and hard stools: a double-blind, randomized, placebo-controlled study. 3
Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease. 4
In vitro sensitivity of probiotics to human pancreatic juice. 5
Assessment of the in vitro inhibitory activity of specific probiotic bacteria against different Escherichia coli strains. 6
Correlation between chronic treatment with proton pump inhibitors and bacterial overgrowth in the stomach: any possible beneficial role for selected lactobacilli? 7
The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. 8
Effect of Bifidobacterium longum BB536 Administration on the Intestinal Environment, Defecation Frequency and Fecal Characteristics of Human Volunteers 9
Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. 10
The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the "gastric barrier effect" in patients chronically treated with PPI: a pilot study. 11
Clinical Uses of Probiotics 12
A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6-month intervention. 13
A Randomized Controlled Trial of Lactobacillus GG in Children With Functional Abdominal Pain14
A randomized double-blind placebo-controlled trial of Lactobacillus GG for abdominal pain disorders in children. 15
Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. 16


1. Saggioro, A. (2004). Probiotics in the treatment of irritable bowel syndrome. Journal of clinical gastroenterology38, S104-S106.
2. Martínez-Martínez, M. I., et al. (2017). The effect of probiotics as a treatment for constipation in elderly people: A systematic review. Archives of gerontology and geriatrics, 71, 142-149.
3. Del Piano, M., et al. (2010). The use of probiotics in healthy volunteers with evacuation disorders and hard stools: a double-blind, randomized, placebo-controlled study. Journal of clinical gastroenterology44, S30-S34.
4. Klemenak, M., et al. (2015). Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease. Digestive diseases and sciences60(11), 3386-3392.
5. Del Piano, M., et al. (2008). In vitro sensitivity of probiotics to human pancreatic juice. Journal of clinical gastroenterology42, S170-S173.
6. Mogna, L., et al. (2012). Assessment of the in vitro inhibitory activity of specific probiotic bacteria against different Escherichia coli strains. Journal of clinical gastroenterology46, S29-S32.
7. Del Piano, M., et al. (2014). Correlation between chronic treatment with proton pump inhibitors and bacterial overgrowth in the stomach: any possible beneficial role for selected lactobacilli?. Journal of clinical gastroenterology48, S40-S46.
8. Dimidi, E., et al. (2014). The effect of probiotics on functional constipation in adults: a systematic review and meta-analysis of randomized controlled trials. The American journal of clinical nutrition100(4), 1075-1084.
9. Ogata, T., et al. (1997). Effect of Bifidobacterium longum BB536 administration on the intestinal environment, defecation frequency and fecal characteristics of human volunteers. Bioscience and Microflora16(2), 53-58.
10. Odamaki, T., et al. (2012). Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. Anaerobe18(1), 14-18.
11. Del Piano, M., et al. (2012). The innovative potential of Lactobacillus rhamnosus LR06, Lactobacillus pentosus LPS01, Lactobacillus plantarum LP01, and Lactobacillus delbrueckii Subsp. delbrueckii LDD01 to restore the “gastric barrier effect” in patients chronically treated with PPI: a pilot study. Journal of clinical gastroenterology46, S18-S26.
12. Islam, S. U. (2016). Clinical uses of probiotics. Medicine95(5).
13. Kajander, K., et al. (2005). A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6‐month intervention. Alimentary pharmacology & therapeutics22(5), 387-394.
14. Francavilla, R., et al. (2010). A randomized controlled trial of Lactobacillus GG in children with functional abdominal pain. Pediatrics126(6), e1445-e1452.
15. Gawrońska, A., et al. (2007). A randomized double‐blind placebo‐controlled trial of Lactobacillus GG for abdominal pain disorders in children. Alimentary pharmacology & therapeutics25(2), 177-184.
16. Odamaki, T., et al. (2012). Effect of the oral intake of yogurt containing Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides fragilis in microbiota. Anaerobe18(1), 14-18.

Herz/Kreislauf


1. Noad, R. L., et al. (2016). Beneficial effect of a polyphenol-rich diet on cardiovascular risk: a randomised control trial. Heart102(17), 1371-1379.
2. Nishimura, M., et al. (2015). Effects of the extract from roasted chicory (Cichorium intybus L.) root containing inulin-type fructans on blood glucose, lipid metabolism, and fecal properties. Journal of traditional and complementary medicine5(3), 161-167.
3. Guess, N. D., et al. (2015). A randomized controlled trial: the effect of inulin on weight management and ectopic fat in subjects with prediabetes. Nutrition & metabolism12(1), 36.
4. Andrade, S., & Borges, N. (2009). Effect of fermented milk containing Lactobacillus acidophilus and Bifidobacterium longum on plasma lipids of women with normal or moderately elevated cholesterol. Journal of dairy research76(4), 469-474.

Psyche


1. Huang, R., et al. (2017). Efficacy of probiotics on anxiety: A meta-analysis of randomized controlled trials. Neuropsychiatry7(6), 862-871.
2. Kim, C. S., & Shin, D. M. (2019). Probiotic food consumption is associated with lower severity and prevalence of depression: A nationwide cross-sectional study. Nutrition63, 169-174.
3. Smith, A., et al. (2015). An investigation of the acute effects of oligofructose-enriched inulin on subjective wellbeing, mood and cognitive performance. Nutrients7(11), 8887-8896.
4. Srikantha, P., & Mohajeri, M. H. (2019). The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. International journal of molecular sciences20(9), 2115.
5. Pärtty, A., et al. (2015). A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatric research77(6), 823.

Zellen


1. Amaretti, A., et al. (2013). Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Applied microbiology and biotechnology97(2), 809-817.
2. Kerimi, A., & Williamson, G. (2016). At the interface of antioxidant signalling and cellular function: Key polyphenol effects. Molecular nutrition & food research60(8), 1770-1788.

Allergie


1. Drago, L., et al. (2015). Immunomodulatory effects of Lactobacillus salivarius LS01 and Bifidobacterium breve BR03, alone and in combination, on peripheral blood mononuclear cells of allergic asthmatics. Allergy, asthma & immunology research7(4), 409-413.
2. Manzotti, G., et al. (2014). Multi-strain Symbiotic Preparations as a Novel Adjuvant Approach to Allergic Rhinitis. Journal of Contemporary Immunology. 1. 67-80.
3. Enomoto, T., et al. (2014). Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergology International63(4), 575-585.
4. Xiao, J. Z., et al. (2006). Probiotics in the treatment of Japanese cedar pollinosis: a double‐blind placebo‐controlled trial. Clinical & Experimental Allergy36(11), 1425-1435.
5. Xiao, J. Z., et al. (2007). Clinical efficacy of probiotic Bifidobacterium longum for the treatment of symptoms of Japanese cedar pollen allergy in subjects evaluated in an environmental exposure unit. Allergology international56(1), 67-75.

Stoffwechselprozesse


1. Les, F., et al. (2018). Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. Journal of ethnopharmacology220, 67-74.
2. Ryu, D., et al. (2016). Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nature medicine22(8), 879.
3. Thilakarathna, W. W., et al. (2018). Polyphenol-based prebiotics and synbiotics: potential for cancer chemoprevention. Current Opinion in Food Science20, 51-57.
4. Andreux, P. A., et al. (2019). The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism1(6), 595.
5. Guess, N. D., et al. (2015). A randomized controlled trial: the effect of inulin on weight management and ectopic fat in subjects with prediabetes. Nutrition & metabolism12(1), 36.
6. Minami, J. I., et al. (2015). Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. Journal of nutritional science4.
7. Minami, J., et al. (2018). Effects of Bifidobacterium breve B-3 on body fat reductions in pre-obese adults: a randomized, double-blind, placebo-controlled trial. Bioscience of microbiota, food and health, 18-001.
8. Mogna, L., et al. (2014). Screening of different probiotic strains for their in vitro ability to metabolise oxalates: any prospective use in humans?. Journal of clinical gastroenterology48, S91-S95.

Immunsystem


1. Pregliasco, F., et al. (2008). A new chance of preventing winter diseases by the administration of synbiotic formulations. Journal of clinical gastroenterology42, S224-S233.
2. Klemenak, M., et al. (2015). Administration of Bifidobacterium breve Decreases the Production of TNF-α in Children with Celiac Disease. Digestive diseases and sciences60(11), 3386-3392.
3. Sugahara, H., et al. (2015). Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Scientific reports5, 13548.
4. Nicola, S., et al. (2010). Interaction between probiotics and human immune cells. Focus Diet. Fibres Pre/Probiot21, 9-12.
5. Mogna, L., et al. (2018). Micronized Cells of the Probiotic Strain Bifidobacterium lactis BS01 Activate Monocyte Polarization: A New Approach. Journal of clinical gastroenterology52, S57-S61.

Haut


1. Manzotti, G., et al. (2014). Probiotics as a Novel Adjuvant Approach to Atopic Dermatitis. Journal of Contemporary Immunology, 1. 57-66.
2. Lemoli, E., et al. (2012). Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. Journal of clinical gastroenterology46, S33-S40.
3. Enomoto, T., et al. (2014). Effects of bifidobacterial supplementation to pregnant women and infants in the prevention of allergy development in infants and on fecal microbiota. Allergology International63(4), 575-585.

Mund und Zähne


1. Del Piano, M., et al. (2014). Correlation between Specific Bacterial Groups in the Oral Cavity and the Severity of Halitosis: Any Possible Beneficial Role for Selected Lactobacilli. J Gastroint Dig Syst4(197), 2.
2. Näse, L., et al. (2001). Effect of long–term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries research35(6), 412-420.

Harnblase


1. Vicariotto, F. (2014). Effectiveness of an association of a cranberry dry extract, D-mannose, and the two microorganisms Lactobacillus plantarum LP01 and Lactobacillus paracasei LPC09 in women affected by cystitis: a pilot study. Journal of clinical gastroenterology48, S96-S101.

Frauen


1. Holloway, L., et al. (2007). Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. British Journal of Nutrition97(2), 365-372.
2. de Brito Alves, J. L., et al. (2019). Gut microbiota and probiotic intervention as a promising therapeutic for pregnant women with cardiometabolic disorders: present and future directions. Pharmacological research, 104252.
3. Han, M. M., et al. (2019). Probiotics improve glucose and lipid metabolism in pregnant women: a meta-analysis. Annals of translational medicine7(5).
4. Reid, G. (2016). The development of probiotics for women’s health. Canadian journal of microbiology63(4), 269-277.
5. Ocaña, V. S., et al. (1999). Characterization of a bacteriocin-like substance produced by a vaginal Lactobacillus salivariusstrain.  Environ. Microbiol.65(12), 5631-5635.
6. Ocaña, V., & Nader-Macías, M. E. (2001). Adhesion of Lactobacillus vaginal strains with probiotic properties to vaginal epithelial cells. Biocell: official journal of the Sociedades Latinoamericanas de Microscopia Electronica... et. al25(3), 265-273.
7. Ocaña, V. S., & Nader-Macías, M. E. (2002). Vaginal lactobacilli: self-and co-aggregating ability. British journal of biomedical science59(4), 183-190.
8. Zárate, G., & Nader‐Macias, M. E. (2006). Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Letters in Applied Microbiology43(2), 174-180.
9. Ocaña, V. S., et al. (1999). Surface characteristics of lactobacilli isolated from human vagina. The Journal of general and applied microbiology45(5), 203-212.
10. Tomás, J., et al. (2002). Influence of pH, temperature and culture media on the growth and bacteriocin production by vaginal Lactobacillus salivarius CRL 1328. Journal of Applied Microbiology93(4), 714-724. '
11. Tomás, J., et al. (2005). Characterisation of potentially probiotic vaginal lactobacilli isolated from Argentinean women. British journal of biomedical science62(4), 170-174.

Männer


1. Chen, X. L., et al. (2013). Antioxidative activity and protective effect of probiotics against high-fat diet-induced sperm damage in rats. Animal7(2), 287-292.
2. Nichols, A. W. (2007). Probiotics and athletic performance: a systematic review. Current sports medicine reports6(4), 269-273.

Kinder


1. Clark, A. K., et al. (2017). Edible plants and their influence on the gut microbiome and acne. International journal of molecular sciences18(5), 1070.
2. Li, K. L., et al. (2019). Alterations of intestinal flora and the effects of probiotics in children with recurrent respiratory tract infection. World Journal of Pediatrics, 1-7.
3. Srikantha, P., & Mohajeri, M. H. (2019). The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. International journal of molecular sciences20(9), 2115.
4. Abrams, S. A., et al. (2005). A combination of prebiotic short-and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents–. The American journal of clinical nutrition82(2), 471-476.
5. Ishizeki, S., et al. (2013). Effect of administration of bifidobacteria on intestinal microbiota in low-birth-weight infants and transition of administered bifidobacteria: a comparison between one-species and three-species administration. Anaerobe23, 38-44.

Travelbacs

Die Wissenschaft hinter Magen-Darm-Beschwerden auf Reisen und der Einfluss von Probiotika

Meta-analysis of probiotics for the prevention of traveler's diarrhea. 1
A prospective study of travellers' diarrhoea: analysis of pathogen findings by destination in various (sub)tropical regions. 2
A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers' diarrhoea. 3
Antimicrobial Effect of Probiotics against Common Pathogens 4
Traveler’s Diarrhea 5
Etiology of travellers' diarrhea. 6
Efficacy of Lactobacillus GG as a Diarrheal Preventive in Travelers. 7
Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry. Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. 8
Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. 9
Using In Vitro Immunomodulatory Properties of Lactic Acid Bacteria for Selection of Probiotics against Salmonella Infection in Broiler Chicks. 10
Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. 11
Bioactivity characterization of Lactobacillus strains isolated from dairy products. 12
The antimicrobial activity of probiotic bacteria Escherichia coli isolated from different natural sources against hemorrhagic E. coli O157:H7. 13
State-of-the-Art Calculation of the Decay Rate of Electroweak Vacuum in the Standard Model. 14
Probiotic Bacteria and their Supernatants Protect Enterocyte Cell Lines from Enteroinvasive Escherichia coli (EIEC) Invasion. 15
Indigenous lactobacilli strains of food and human sources reverse enteropathogenic E. coli O26:H11-induced damage in intestinal epithelial cell lines: effect on redistribution of tight junction proteins. 16
Lactobacillus reuteri strains protect epithelial barrier integrity of IPEC-J2 monolayers from the detrimental effect of enterotoxigenic Escherichia coli. 17
Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. 18


1. McFarland, L. V. (2007). Meta-analysis of probiotics for the prevention of traveler's diarrhea. Travel medicine and infectious disease5(2), 97-105.
2. Lääveri, T., et al. (2018). A prospective study of travellers' diarrhoea: analysis of pathogen findings by destination in various (sub) tropical regions. Clinical Microbiology and Infection24(8), 908-e9.
3. Drakoularakou, A., et al. (2010). A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers' diarrhoea. European Journal of Clinical Nutrition64(2), 146.
4. Fijan, S. (2016). Antimicrobial effect of probiotics against common pathogens. Probiotics and Prebiotics in Human Nutrition and Health.
5. Yates, J. (2005). Traveler’s diarrhea. Am Fam Physician71(11), 2095-100.
6. Jiang, Z. D., & DuPont, H. L. (2017). Etiology of travellers’ diarrhea. Journal of travel medicine24(suppl_1), S13-S16.
7. Hilton, E., et al. (1997). Efficacy of Lactobacillus GG as a diarrheal preventive in travelers. Journal of travel medicine4(1), 41-43.
8. Cean, A., et al. (2015). Effect of human isolated probiotic bacteria on preventing Campylobacter jejuni colonization of poultry. Foodborne pathogens and disease12(2), 122-130.
9. Shokryazdan, P., et al. (2014). Probiotic potential of Lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed research international2014.
10. Feng, J., et al. (2016). Using in vitro immunomodulatory properties of lactic acid bacteria for selection of probiotics against Salmonella infection in broiler chicks. PloS one11(1), e0147630.
11. Aoudia, N., et al. (2016). Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiology53, 51-59.
12. Haghshenas, B., et al. (2015). Bioactivity characterization of Lactobacillus strains isolated from dairy products. Microbiologyopen4(5), 803-813.
13. Karimi, S., et al. (2018). The antimicrobial activity of probiotic bacteria Escherichia coli isolated from different natural sources against hemorrhagic E. coli O157: H7. Electronic physician10(3), 6548.
14. Chigusa, S., et al. (2017). State-of-the-art calculation of the decay rate of electroweak vacuum in the standard model. Physical review letters119(21), 211801.
15. Khodaii, Z., et al. (2017). Probiotic bacteria and their supernatants protect enterocyte cell lines from enteroinvasive Escherichia coli (EIEC) invasion. International journal of molecular and cellular medicine6(3), 183.
16. Jariwala, R., et al. (2017). Indigenous lactobacilli strains of food and human sources reverse enteropathogenic E. coli O26: H11-induced damage in intestinal epithelial cell lines: effect on redistribution of tight junction proteins. Microbiology163(9), 1263-1272.
17. Karimi, S., et al. (2018). Lactobacillus reuteri strains protect epithelial barrier integrity of IPEC‐J2 monolayers from the detrimental effect of enterotoxigenic Escherichia coli. Physiological reports6(2), e13514.
18. Anderson, R. C., et al. (2010). Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC microbiology10(1), 316.